Semi-parametric inference for effective age models

Eric Beutner, Maastricht University
Joint work with Laurent Bordes and Laurent Doyen

Troyes, January 29

Overview

Introduction /Recap
Inference hazard and link function
Inference hazard and effective age function

Introduction /Recap

Recurrent events

- Some examples of recurrent events:
- Re-occurrence of a tumour after surgical removal in cancer studies;
- Migraines;
- Outbreak of a disease;
- Failure of a mechanical or electronic system;
- Discovery of a bug in an operating system software or of an error in a scientific article.

Recurrent events

- Some examples of recurrent events:
- Re-occurrence of a tumour after surgical removal in cancer studies;
- Migraines;
- Outbreak of a disease;
- Failure of a mechanical or electronic system;
- Discovery of a bug in an operating system software or of an error in a scientific article.
- Monitoring an observational unit (e.g. patient, mechanical system) during the time interval $[0, \tau]$, the data consist of:
- The times T_{1}, T_{2}, \ldots, between successive event occurrences;
- The number of event occurrences $K:=\max \left\{k \in \mathbb{N}_{0} \mid S_{k} \leq \tau\right\}$, where $S_{k}=\sum_{\ell=1}^{k} T_{\ell}$;
- Additional covariates Z.

Counting process formulation

- Alternatively, the information at time t can be represented by

$$
\{\mathbf{Z},\{N(s), 0 \leq s \leq t\},\{Y(s), 0 \leq s \leq t\}\},
$$

where

- $N(s)=\sum_{\ell=1}^{\infty} \mathbb{1}_{\left\{S_{\ell} \leq s\right\}} ;$
- $Y(s)=\mathbb{1}\{s \leq \tau\}$;
- Z covariates as above.

A probabilistic model

Hollander \& Peña (2004) introduced the following model:

A probabilistic model

Hollander \& Peña (2004) introduced the following model:
■ $N=\{N(s) \mid s \in[0, \tau]\}$ point process;

A probabilistic model

Hollander \& Peña (2004) introduced the following model:
■ $N=\{N(s) \mid s \in[0, \tau]\}$ point process;

- It is assumed that compensator A of N given the covariates \mathbf{Z} equals

$$
A(t \mid \mathbf{Z})=\int_{0}^{t} Y_{i}(s) \lambda_{0}(\varepsilon(s, \omega)) \psi\left(\boldsymbol{\beta}_{0}^{\prime} \mathbf{Z}\right) d s
$$

where

A probabilistic model

Hollander \& Peña (2004) introduced the following model:
■ $N=\{N(s) \mid s \in[0, \tau]\}$ point process;

- It is assumed that compensator A of N given the covariates \mathbf{Z} equals

$$
A(t \mid \mathbf{Z})=\int_{0}^{t} Y_{i}(s) \lambda_{0}(\varepsilon(s, \omega)) \psi\left(\boldsymbol{\beta}_{0}^{\prime} \mathbf{Z}\right) d s
$$

where

- $\quad \psi$ is a known link function;

A probabilistic model

Hollander \& Peña (2004) introduced the following model:
■ $N=\{N(s) \mid s \in[0, \tau]\}$ point process;

- It is assumed that compensator A of N given the covariates Z equals

$$
A(t \mid \mathbf{Z})=\int_{0}^{t} Y_{i}(s) \lambda_{0}(\varepsilon(s, \omega)) \psi\left(\boldsymbol{\beta}_{0}^{\prime} \mathbf{Z}\right) d s
$$

where

- ψ is a known link function;
- $\boldsymbol{\beta}_{0}$ is a (unknown) parameter vector;

A probabilistic model

Hollander \& Peña (2004) introduced the following model:
■ $\quad N=\{N(s) \mid s \in[0, \tau]\}$ point process;

- It is assumed that compensator A of N given the covariates Z equals

$$
A(t \mid \mathbf{Z})=\int_{0}^{t} Y_{i}(s) \lambda_{0}(\varepsilon(s, \omega)) \psi\left(\boldsymbol{\beta}_{0}^{\prime} \mathbf{Z}\right) d s
$$

where

- ψ is a known link function;
- $\boldsymbol{\beta}_{0}$ is a (unknown) parameter vector;
- $\varepsilon(s, \omega)$ is a possibly random function that describes the effective age at time s;

A probabilistic model

Hollander \& Peña (2004) introduced the following model:
■ $N=\{N(s) \mid s \in[0, \tau]\}$ point process;

- It is assumed that compensator A of N given the covariates \mathbf{Z} equals

$$
A(t \mid \mathbf{Z})=\int_{0}^{t} Y_{i}(s) \lambda_{0}(\varepsilon(s, \omega)) \psi\left(\boldsymbol{\beta}_{0}^{\prime} \mathbf{Z}\right) d s
$$

where

- ψ is a known link function;
- $\boldsymbol{\beta}_{0}$ is a (unknown) parameter vector;
- $\varepsilon(s, \omega)$ is a possibly random function that describes the effective age at time s;
- λ_{0} is an unknown hazard rate function.

Examples

■ Taking $\psi(u)=\exp (u)$ and $\varepsilon(s, \omega)=s$ leads to the Cox model.

Examples

■ Taking $\psi(u)=\exp (u)$ and $\varepsilon(s, \omega)=s$ leads to the Cox model.
■ Taking $\psi(u)=1$ and $\varepsilon(s, \omega)=s-S_{N(s-, \omega)}$ leads i.i.d. inter-occurrence times, i.e., renewal process.

Examples

■ Taking $\psi(u)=\exp (u)$ and $\varepsilon(s, \omega)=s$ leads to the Cox model.

- Taking $\psi(u)=1$ and $\varepsilon(s, \omega)=s-S_{N(s-, \omega)}$ leads i.i.d. inter-occurrence times, i.e., renewal process.

■ Taking $\psi(u)=1$ and $\varepsilon(s, \omega)=s-\theta S_{k-1}(\omega)$ on $\left(S_{k-1}(\omega), S_{k}(\omega)\right]$ leads to an Arithmetic Reduction Age model of Type $1\left(\mathrm{ARA}_{1}\right)$.

- For $\theta=0$ we have $\varepsilon(s, \omega)=s \Rightarrow$ Poisson process for which effective age = calendar time;
- For $\theta=1$ we have $\varepsilon(s, \omega)=s-S_{k-1}(\omega) \Rightarrow$ renewal process;
- For $\theta \in(0,1) \Rightarrow$ imperfect repair;
- Gonzales et al. (2005) applied the model with $\theta \in\{0,0.5,1\}$ to the response of patients suffering from a non-curable cancer to a therapy.

Semi-parametric inference on hazard rate function and link function

Inference

■ Let $\left(N_{i}, Y_{i}, Z_{i}\right), 1 \leq i \leq m$, be m copies of (N, Y, Z).

Inference

■ Let $\left(N_{i}, Y_{i}, Z_{i}\right), 1 \leq i \leq m$, be m copies of (N, Y, Z).

- For inference for the above model recall that an event at calendar time s is in general not "caused by" $\lambda(s) \Rightarrow$ Keep track of both time scales.

Inference

■ Let $\left(N_{i}, Y_{i}, Z_{i}\right), 1 \leq i \leq m$, be m copies of (N, Y, Z).

- For inference for the above model recall that an event at calendar time s is in general not "caused by" $\lambda(s) \Rightarrow$ Keep track of both time scales.
■ To do so Peña et al. (2007) introduced double indexed stochastic processes:

$$
\begin{gathered}
N_{i}^{d}(s, t)=\int_{0}^{s} H_{i}(v, t) d N_{i}(v), \text { and } \\
A_{i}^{d}(s, t)=\int_{0}^{s} H_{i}(v, t) d A_{i}(v)
\end{gathered}
$$

where $H_{i}(s, t)=\mathbb{1}_{\left\{\epsilon_{i}(s) \leq t\right\}}$.

Inference

■ Let $\left(N_{i}, Y_{i}, Z_{i}\right), 1 \leq i \leq m$, be m copies of (N, Y, Z).

- For inference for the above model recall that an event at calendar time s is in general not "caused by" $\lambda(s) \Rightarrow$ Keep track of both time scales.
■ To do so Peña et al. (2007) introduced double indexed stochastic processes:

$$
\begin{gathered}
N_{i}^{d}(s, t)=\int_{0}^{s} H_{i}(v, t) d N_{i}(v), \text { and } \\
A_{i}^{d}(s, t)=\int_{0}^{s} H_{i}(v, t) d A_{i}(v),
\end{gathered}
$$

where $H_{i}(s, t)=\mathbb{1}_{\left\{\epsilon_{i}(s) \leq t\right\}}$.
■ $H_{i}(s, t)$ indicates whether at calendar time s the age is at most t.

Inference

■ Let $\left(N_{i}, Y_{i}, Z_{i}\right), 1 \leq i \leq m$, be m copies of (N, Y, Z).

- For inference for the above model recall that an event at calendar time s is in general not "caused by" $\lambda(s) \Rightarrow$ Keep track of both time scales.
■ To do so Peña et al. (2007) introduced double indexed stochastic processes:

$$
\begin{gathered}
N_{i}^{d}(s, t)=\int_{0}^{s} H_{i}(v, t) d N_{i}(v), \text { and } \\
A_{i}^{d}(s, t)=\int_{0}^{s} H_{i}(v, t) d A_{i}(v),
\end{gathered}
$$

where $H_{i}(s, t)=\mathbb{1}_{\left\{\epsilon_{i}(s) \leq t\right\}}$.

- $H_{i}(s, t)$ indicates whether at calendar time s the age is at most t.
- $N_{i}^{d}(s, t)$ gives the number of events during 0 and s with effective age at most t.

Inference (cont'd)

- The difference between N_{i}^{d} and A_{i}^{d} equals

$$
M_{i}^{d}(s, t)=\int_{0}^{s} H_{i}(v, t) d M_{i}(v) \text { with } M_{i}=N_{i}-A_{i}
$$

Notice that M_{i}^{d} is not directly amenable to inference on λ_{0}, as it involves the time-transformed λ_{0}, i.e. $\lambda_{0} \circ \epsilon$.

Inference (cont'd)

- The difference between N_{i}^{d} and A_{i}^{d} equals

$$
M_{i}^{d}(s, t)=\int_{0}^{s} H_{i}(v, t) d M_{i}(v) \text { with } M_{i}=N_{i}-A_{i}
$$

Notice that M_{i}^{d} is not directly amenable to inference on λ_{0}, as it involves the time-transformed λ_{0}, i.e. $\lambda_{0} \circ \epsilon$.

- Solution: De-couple λ_{0} and ϵ.

Inference (cont'd)

- The difference between N_{i}^{d} and A_{i}^{d} equals

$$
M_{i}^{d}(s, t)=\int_{0}^{s} H_{i}(v, t) d M_{i}(v) \text { with } M_{i}=N_{i}-A_{i}
$$

Notice that M_{i}^{d} is not directly amenable to inference on λ_{0}, as it involves the time-transformed λ_{0}, i.e. $\lambda_{0} \circ \epsilon$.

- Solution: De-couple λ_{0} and ϵ.
- Applying a change of variable leads to

$$
M_{i}^{*}(s, t)=N_{i}^{*}(s, t)-\int_{0}^{t} Y_{i}^{d}(s, u, \boldsymbol{\beta}) d \Lambda(u)
$$

where

$$
Y_{i}^{d}(s, t, \boldsymbol{\beta})=\text { size of risk set at calendar time } s \text { with age } t
$$

is a 'time-transformed' at risk process.

Inference (cont’d.)

- For a given $\boldsymbol{\beta}$ the above representation suggests the following method of moment estimator for $\Lambda_{0}(t)$ at calendar time s :

$$
\widehat{\Lambda}(t \mid s, \boldsymbol{\beta})=\int_{0}^{t}\left(J(s, t) / \sum_{i=1}^{m} Y_{i}^{d}(s, u, \boldsymbol{\beta})\right)\left[\sum_{i=1}^{m} N_{i}^{d}(s, d u)\right],
$$

where $J(s, t)=1$ if $\sum_{i=1}^{m} Y_{i}^{d}(s, u, \boldsymbol{\beta})>0$ and zero otherwise.

Inference (cont'd.)

- For a given $\boldsymbol{\beta}$ the above representation suggests the following method of moment estimator for $\Lambda_{0}(t)$ at calendar time s :

$$
\widehat{\Lambda}(t \mid s, \boldsymbol{\beta})=\int_{0}^{t}\left(J(s, t) / \sum_{i=1}^{m} Y_{i}^{d}(s, u, \boldsymbol{\beta})\right)\left[\sum_{i=1}^{m} N_{i}^{d}(s, d u)\right],
$$

where $J(s, t)=1$ if $\sum_{i=1}^{m} Y_{i}^{d}(s, u, \boldsymbol{\beta})>0$ and zero otherwise.
■ Inserting $\widehat{\Lambda}(t \mid s, \boldsymbol{\beta})$ in the full likelihood Peña et al. (2007) obtain a profile likelihood function for estimating $\boldsymbol{\beta}$.

Inference (cont'd.)

- For a given $\boldsymbol{\beta}$ the above representation suggests the following method of moment estimator for $\Lambda_{0}(t)$ at calendar time s :

$$
\widehat{\Lambda}(t \mid s, \boldsymbol{\beta})=\int_{0}^{t}\left(J(s, t) / \sum_{i=1}^{m} Y_{i}^{d}(s, u, \boldsymbol{\beta})\right)\left[\sum_{i=1}^{m} N_{i}^{d}(s, d u)\right],
$$

where $J(s, t)=1$ if $\sum_{i=1}^{m} Y_{i}^{d}(s, u, \boldsymbol{\beta})>0$ and zero otherwise.

- Inserting $\widehat{\Lambda}(t \mid s, \boldsymbol{\beta})$ in the full likelihood Peña et al. (2007) obtain a profile likelihood function for estimating $\boldsymbol{\beta}$.
- Recall that, for instance, in the Cox model this leads to consistent and asymptotically normally distributed estimates.

Results

- Dorado et al. (1997) weak convergence results for $\Lambda_{0}:=\int \lambda_{0}(u) d u$ for a model slightly more general than ARA $_{1}$.
- Gärtner (2003) also weak convergence results for the same model but different data collection process.
■ Adekpedjou and Stocker (2015) weak convergence results for $\Lambda_{0}:=\int \lambda_{0}(u) d u$ and β for an ARA $_{1}$-type model.
- Very recently Peña (2014) obtained weak convergence results for $\Lambda_{0}:=\int \lambda_{0}(u) d u$ and β without restricting the effective age function.

Results

- Dorado et al. (1997) weak convergence results for $\Lambda_{0}:=\int \lambda_{0}(u) d u$ for a model slightly more general than ARA $_{1}$.
- Gärtner (2003) also weak convergence results for the same model but different data collection process.
- Adekpedjou and Stocker (2015) weak convergence results for $\Lambda_{0}:=\int \lambda_{0}(u) d u$ and β for an ARA ${ }_{1}$-type model.
■ Very recently Peña (2014) obtained weak convergence results for $\Lambda_{0}:=\int \lambda_{0}(u) d u$ and β without restricting the effective age function.
- In these articles it is assumed that the effective age function is entirely known \Rightarrow the way the interventions influence the effective age must be known by the statistician.

Semi-parametric inference for hazard rate function and effective age function

Introduction

- Already seen: Models where the age function ϵ depends on a parameter $\left(\epsilon=s-\theta S_{k-1}\right)$.

Introduction

- Already seen: Models where the age function ϵ depends on a parameter $\left(\epsilon=s-\theta S_{k-1}\right)$.
- Assuming, for instance, θ to be unknown it is tempting to use the same inferential procedure.

Introduction

- Already seen: Models where the age function ϵ depends on a parameter ($\epsilon=s-\theta S_{k-1}$).
- Assuming, for instance, θ to be unknown it is tempting to use the same inferential procedure.
- However, notice this model does not fit directly into the above inferential procedure, because unknown are $\left(\theta_{0}, \lambda_{0}\right)$ where θ_{0} unknown parameter of age function ϵ in contrast to $\boldsymbol{\beta}$ which is an unknown parameter of link function ψ.

Introduction

- Already seen: Models where the age function ϵ depends on a parameter ($\epsilon=s-\theta S_{k-1}$).
- Assuming, for instance, θ to be unknown it is tempting to use the same inferential procedure.
- However, notice this model does not fit directly into the above inferential procedure, because unknown are $\left(\theta_{0}, \lambda_{0}\right)$ where θ_{0} unknown parameter of age function ϵ in contrast to $\boldsymbol{\beta}$ which is an unknown parameter of link function ψ.

Model

■ Let $N=\{N(s) \mid s \in[0, \tau]\}$ be a counting process.

- It is assumed that the compensator A of N is given by

$$
A(t)=\int_{0}^{t} Y(s) \lambda\left(\varepsilon^{\boldsymbol{\theta}}(s)\right) d s
$$

Model

■ Let $N=\{N(s) \mid s \in[0, \tau]\}$ be a counting process.

- It is assumed that the compensator A of N is given by

$$
A(t)=\int_{0}^{t} Y(s) \lambda\left(\varepsilon^{\boldsymbol{\theta}}(s)\right) d s
$$

■ Moreover, for every $\boldsymbol{\theta} \in \Theta, \Theta \subset \mathbb{R}^{d}$, we have that the process $\varepsilon^{\boldsymbol{\theta}}=\left\{\epsilon^{\boldsymbol{\theta}}(s), 0 \leq s \leq \tau\right\}$ fulfils

- $\varepsilon^{\boldsymbol{\theta}}(0, \omega)=c_{0}$ a.s. for some $c_{0} \in \mathbb{R}_{+}$;
- $s \rightarrow \varepsilon^{\boldsymbol{\theta}}(s, \omega)$ is a.s. non-negative;
- $s \rightarrow \varepsilon^{\boldsymbol{\theta}}(s, \omega)$ is a.s. continuous and increasing on $\left(S_{k-1}, S_{k}\right]$, $k \in \mathbb{N}$.

Model

- Let $N=\{N(s) \mid s \in[0, \tau]\}$ be a counting process.
- It is assumed that the compensator A of N is given by

$$
A(t)=\int_{0}^{t} Y(s) \lambda\left(\varepsilon^{\boldsymbol{\theta}}(s)\right) d s
$$

■ Moreover, for every $\boldsymbol{\theta} \in \Theta, \Theta \subset \mathbb{R}^{d}$, we have that the process $\varepsilon^{\boldsymbol{\theta}}=\left\{\epsilon^{\boldsymbol{\theta}}(s), 0 \leq s \leq \tau\right\}$ fulfils

- $\varepsilon^{\boldsymbol{\theta}}(0, \omega)=c_{0}$ a.s. for some $c_{0} \in \mathbb{R}_{+}$;
- $s \rightarrow \varepsilon^{\theta}(s, \omega)$ is a.s. non-negative;
- $s \rightarrow \varepsilon^{\boldsymbol{\theta}}(s, \omega)$ is a.s. continuous and increasing on $\left(S_{k-1}, S_{k}\right]$, $k \in \mathbb{N}$.
■ Example ARA_{1} : Then $\Theta=[0,1]$ and $\varepsilon^{\theta}(s, \omega)=s-\theta S_{k-1}(\omega)$ on $\left(S_{k-1}(\omega), S_{k}(\omega)\right]$.

Profile likelihood

■ Let N_{1}, \ldots, N_{m} be m independent copies of N. Then full likelihood equals $L_{m, F}\left(s \mid \lambda, \varepsilon^{\boldsymbol{\theta}}, \mathbf{D}_{m}(s)\right)$

$$
\begin{aligned}
& \prod_{i=1}^{m} \prod_{u=0}^{s}\left[Y_{i}(u) \lambda\left(\varepsilon_{i}^{\boldsymbol{\theta}}(u)\right)\right]^{N_{i}(\Delta u)} \exp \left[-\sum_{i=1}^{m} \int_{0}^{s} Y_{i}(u) \lambda\left(\varepsilon_{i}^{\boldsymbol{\theta}}(u)\right) d u\right] \\
= & \prod_{i=1}^{m} \prod_{u=0}^{s}\left[Y_{i}(u) \lambda\left(\varepsilon_{i}^{\boldsymbol{\theta}}(u)\right)\right]^{N_{i}(\Delta u)} \exp \left[-\int_{0}^{\infty} S_{m}^{\boldsymbol{\theta}}(s, u) d \Lambda(u)\right],
\end{aligned}
$$

where $\mathbf{D}_{m}(s)$ denotes the data at time s and

$$
\begin{aligned}
\mathcal{S}_{m}^{\boldsymbol{\theta}}(s, t):= & \sum_{i=1}^{m} \sum_{j=1}^{N_{i}(s-)} \gamma_{i, j-1}^{\theta}(t) \cdot \mathbb{1}_{\left(\varepsilon_{i, j-1}^{\theta}\left(S_{i, j-1}+\right), \varepsilon_{i, j-1}^{\theta}\left(S_{i, j}\right)\right]}(t) \\
& +\sum_{i=1}^{m} \gamma_{i, N_{i}(s-)}^{\theta}(t) \cdot \mathbb{1}_{\left(\varepsilon_{i, N_{i}(s-)}^{\theta}\left(S_{i, N_{i}(s-)}+\right), \varepsilon_{i, N_{i}(s-)}^{\theta}\left(s \wedge \tau_{i}\right)\right]}(t) .
\end{aligned}
$$

Profile likelihood (cont'd.)

- To profile out the infinite-dimensional parameter we use the method-of-moment estimator proposed by Peña et al. that equals here for fixed $\boldsymbol{\theta}$

$$
\widehat{\Lambda}_{m}(s, t \mid \boldsymbol{\theta}):=\int_{0}^{t} \frac{J_{m}^{\boldsymbol{\theta}}(s, u)}{S_{m}^{\boldsymbol{\theta}}(s, u)}\left[\sum_{i=1}^{m} N_{i}^{d, \boldsymbol{\theta}}(s, d u)\right]
$$

Profile likelihood (cont’d.)

- To profile out the infinite-dimensional parameter we use the method-of-moment estimator proposed by Peña et al. that equals here for fixed $\boldsymbol{\theta}$

$$
\widehat{\Lambda}_{m}(s, t \mid \boldsymbol{\theta}):=\int_{0}^{t} \frac{J_{m}^{\boldsymbol{\theta}}(s, u)}{S_{m}^{\boldsymbol{\theta}}(s, u)}\left[\sum_{i=1}^{m} N_{i}^{d, \boldsymbol{\theta}}(s, d u)\right]
$$

- Worth mentioning that $\widehat{\Lambda}_{m}$ can be justified as NPMLE.
- Hence full likelihood after plugging in $\widehat{\Lambda}_{m}$ can be considered profile likelihood function

$$
\ell_{m, P}\left(s \mid \boldsymbol{\theta}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s)\right)=-\int_{0}^{s} \sum_{i=1}^{m} \log \left(\mathcal{S}_{m}\left(s, \varepsilon_{i}^{\boldsymbol{\theta}}(w)\right)\right) d N_{i}(w)
$$

Preparation for main theorem

- To motivate the main result consider log profile likelihood

$$
-\int_{0}^{s} \sum_{i=1}^{m} \log \left(\mathcal{S}_{m}^{\theta}\left(s, \varepsilon_{i}^{\theta}(w)\right)\right) d N_{i}(w)
$$

for an ARA $_{1}$ model and $\theta=0$ and $\theta=1$, respectively.

Preparation for main theorem

- To motivate the main result consider log profile likelihood

$$
-\int_{0}^{s} \sum_{i=1}^{m} \log \left(\mathcal{S}_{m}^{\theta}\left(s, \varepsilon_{i}^{\theta}(w)\right)\right) d N_{i}(w)
$$

for an ARA $_{1}$ model and $\theta=0$ and $\theta=1$, respectively.

- Take $m=2$, let both samples be Type-II censored and consider arbitrary event times $s_{1,1}, \ldots, s_{1, n_{1}}$ and $s_{2,1}, \ldots, s_{2, n_{2}}$.

Preparation for main theorem

- To motivate the main result consider log profile likelihood

$$
-\int_{0}^{s} \sum_{i=1}^{m} \log \left(\mathcal{S}_{m}^{\theta}\left(s, \varepsilon_{i}^{\theta}(w)\right)\right) d N_{i}(w)
$$

for an ARA $_{1}$ model and $\theta=0$ and $\theta=1$, respectively.

- Take $m=2$, let both samples be Type-II censored and consider arbitrary event times $s_{1,1}, \ldots, s_{1, n_{1}}$ and $s_{2,1}, \ldots, s_{2, n_{2}}$.
Then with $s=\max \left\{s_{1, n_{1}}, s_{2, n_{2}}\right\}$ the function $\sum_{i=1}^{2} \mathcal{S}_{2}^{0}(s, \cdot)$ equals:

$$
\mathbb{1}_{\left(0, s_{1,1}\right]}(\cdot)+\mathbb{1}_{\left(s_{1,1}, s_{1,2}\right]}(\cdot)+\ldots+\mathbb{1}_{\left(s_{\left.1, n_{1}-1, s_{1, n_{1}}\right]}\right.}(\cdot)+\ldots+\mathbb{1}_{\left(s_{2, n_{2}-1}, s_{2, n_{2}}\right]}(\cdot)
$$

Preparation for main theorem

- To motivate the main result consider log profile likelihood

$$
-\int_{0}^{s} \sum_{i=1}^{m} \log \left(\mathcal{S}_{m}^{\theta}\left(s, \varepsilon_{i}^{\theta}(w)\right)\right) d N_{i}(w)
$$

for an ARA $_{1}$ model and $\theta=0$ and $\theta=1$, respectively.

- Take $m=2$, let both samples be Type-II censored and consider arbitrary event times $s_{1,1}, \ldots, s_{1, n_{1}}$ and $s_{2,1}, \ldots, s_{2, n_{2}}$.
Then with $s=\max \left\{s_{1, n_{1}}, s_{2, n_{2}}\right\}$ the function $\sum_{i=1}^{2} \mathcal{S}_{2}^{0}(s, \cdot)$ equals:

$$
\mathbb{1}_{\left(0, s_{1,1}\right]}(\cdot)+\mathbb{1}_{\left(s_{1,1}, s_{1,2}\right]}(\cdot)+\ldots+\mathbb{1}_{\left(s_{\left.1, n_{1}-1, s_{1, n_{1}}\right]}\right.}(\cdot)+\ldots+\mathbb{1}_{\left(s_{2, n_{2}-1}, s_{2, n_{2}}\right]}(\cdot)
$$

whereas the function $\sum_{i=1}^{2} \mathcal{S}_{2}^{1}(s, \cdot)$ equals

$$
\mathbb{1}_{\left(0, s_{1,1}\right]}(\cdot)+\mathbb{1}_{\left(0, s_{1,2}\right]}(\cdot)+\ldots+\mathbb{1}_{\left(0, s_{\left.1, n_{1}\right]}\right.}(\cdot)+\ldots+\mathbb{1}_{\left(0, s_{2, n_{2}}\right]}(\cdot)
$$

Main result part (a)

Theorem: Let $\left(\mathbb{P}^{\lambda_{0}, \boldsymbol{\theta}_{0}}\right)^{m}$ the m-fold product measure of $\mathbb{P}^{\lambda_{0}, \boldsymbol{\theta}_{0}}$ and the samples Type-II censored.
(a) Denote by $A_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}$ the set of all ω 's such that for all pairs (i, j), $1 \leq i \leq m, 1 \leq j \leq J_{i}\left(s^{*}\right)$, and all pairs $(k, \ell) 1 \leq k \leq m$, $1 \leq \ell \leq J_{k}\left(s^{*}\right)$, we have that

$$
\varepsilon_{i, j-1}^{\theta}\left(S_{i, j-1}(\omega)\right)<\varepsilon_{k, \ell-1}^{\theta}\left(S_{k, \ell}(\omega)\right)
$$

implies that

$$
\varepsilon_{i, j-1}^{\tilde{\theta}}\left(S_{i, j-1}(\omega)\right)<\varepsilon_{k, \ell-1}^{\tilde{\theta}}\left(S_{k, \ell}(\omega)\right) .
$$

Then we have

$$
\begin{aligned}
& \left(\mathbb{P}^{\lambda_{0}, \boldsymbol{\theta}_{0}}\right)^{m}\left(\ell_{P, m}\left(s^{*} \mid \boldsymbol{\theta}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s)\right) \geq \ell_{P, m}\left(s^{*} \mid \tilde{\boldsymbol{\theta}}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s)\right)\right) \\
\geq & \left(\mathbb{P}^{\lambda_{0}, \boldsymbol{\theta}_{0}}\right)^{m}\left(A_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}\right) .
\end{aligned}
$$

Remarks on part (a)

- The theorem provides a tool for pairwise comparison of the profile likelihood function.

Remarks on part (a)

- The theorem provides a tool for pairwise comparison of the profile likelihood function.
- Intuitively, the condition leads to the result, because
- \mathcal{S}_{m}^{θ} consists (roughly) of indicator functions of the form

$$
\mathbb{1}_{\left(\varepsilon_{i, j-1}^{\theta}\left(S_{i, j-1}+\right), \infty\right)}(\cdot)
$$

and $\mathcal{S}_{m}^{\tilde{\theta}}$ is of the form

$$
\mathbb{1}_{\left(\varepsilon_{i, j-1}^{\tilde{\theta}}\left(S_{i, j-1}+\right), \infty\right)}(\cdot)
$$

Remarks on part (a)

- The theorem provides a tool for pairwise comparison of the profile likelihood function.
- Intuitively, the condition leads to the result, because
$-\mathcal{S}_{m}^{\theta}$ consists (roughly) of indicator functions of the form

$$
\mathbb{1}_{\left(\varepsilon_{i, j-1}^{\theta}\left(S_{i, j-1}+\right), \infty\right)}(\cdot)
$$

and $\mathcal{S}_{m}^{\tilde{\theta}}$ is of the form

$$
\mathbb{1}_{\left(\varepsilon_{i, j-1}^{\tilde{\theta}}\left(S_{i, j-1}+\right), \infty\right)}(\cdot) .
$$

- We evaluate these indicators at

$$
\varepsilon_{k, \ell-1}^{\boldsymbol{\theta}}\left(S_{k, \ell}(\omega)\right) \text { and } \varepsilon_{k, \ell-1}^{\tilde{\theta}}\left(S_{k, \ell}(\omega)\right), \text { respectively. }
$$

Main result part (b)

Theorem (cont'd) (b) Denote by $B_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}$ the set of all $\omega \in A_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}$ for which we additionally have that there are at least two pairs $(\underline{i}, \underline{j})$, $1 \leq \underline{i} \leq m, 1 \leq \underline{j} \leq J_{\underline{i}}\left(s^{*}\right)$, and $(\underline{k}, \underline{\ell}), 1 \leq \underline{k} \leq m, 1 \leq \underline{\ell} \leq \overline{J_{\underline{k}}}\left(s^{*}\right)$, such that

$$
\varepsilon_{\underline{i}, \underline{j}-1}^{\tilde{\theta}}\left(S_{\underline{i}, \underline{j}-1}(\omega)\right)<\varepsilon_{\underline{k}, \underline{\ell}-1}^{\tilde{\theta}}\left(S_{\underline{k}, \underline{\ell}}(\omega)\right)
$$

but

$$
\varepsilon_{\underline{i}, \underline{j}-1}^{\theta}\left(S_{\underline{i}, \underline{j}-1}(\omega)\right) \geq \varepsilon_{\underline{k}, \underline{\ell}-1}^{\theta}\left(S_{\underline{k}, \underline{\ell}}(\omega)\right)
$$

Then we have

$$
\begin{aligned}
& \left(\mathbb{P}^{\lambda_{0}, \boldsymbol{\theta}_{0}}\right)^{m}\left(\ell_{P, m}\left(s^{*} \mid \boldsymbol{\theta}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s)\right)>\ell_{P, m}\left(s^{*} \mid \tilde{\boldsymbol{\theta}}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s)\right)\right) \\
& \geq\left(\mathbb{P}^{\lambda_{0}, \boldsymbol{\theta}_{0}}\right)^{m}\left(B_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}\right) .
\end{aligned}
$$

Remarks on part (b)

- As in part (a) we get a tool for pairwise comparison of the profile likelihood function.

Remarks on part (b)

- As in part (a) we get a tool for pairwise comparison of the profile likelihood function.
■ We only consider $\omega \in A_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}$. For those ω we already know that $\ell_{P, m}$ at $\boldsymbol{\theta}$ is at least as large as at $\tilde{\boldsymbol{\theta}}$

Remarks on part (b)

- As in part (a) we get a tool for pairwise comparison of the profile likelihood function.
■ We only consider $\omega \in A_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}$. For those ω we already know that $\ell_{P, m}$ at $\boldsymbol{\theta}$ is at least as large as at $\tilde{\boldsymbol{\theta}}$
- Intuitively, the condition leads to the result, because
- \mathcal{S}_{m}^{θ} and $\mathcal{S}_{m}^{\tilde{\theta}}$ consists (roughly) of indicator functions of the form

$$
\mathbb{1}_{\left(\varepsilon_{i, j-1}^{\theta}\left(S_{i, j-1}+\right), \infty\right)}(\cdot) \text { and } \mathbb{1}_{\left(\varepsilon_{i, j-1}^{\tilde{\theta}}\left(S_{i, j-1}+\right), \infty\right)}(\cdot) \text {, respectively. }
$$

Remarks on part (b)

- As in part (a) we get a tool for pairwise comparison of the profile likelihood function.
■ We only consider $\omega \in A_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}$. For those ω we already know that $\ell_{P, m}$ at $\boldsymbol{\theta}$ is at least as large as at $\tilde{\boldsymbol{\theta}}$
- Intuitively, the condition leads to the result, because
- \mathcal{S}_{m}^{θ} and $\mathcal{S}_{m}^{\tilde{\theta}}$ consists (roughly) of indicator functions of the form

$$
\mathbb{1}_{\left(\varepsilon_{i, j-1}^{\boldsymbol{\theta}}\left(S_{i, j-1}+\right), \infty\right)}(\cdot) \text { and } \mathbb{1}_{\left(\varepsilon_{i, j-1}^{\tilde{\theta}}\left(S_{i, j-1}+\right), \infty\right)}(\cdot) \text {, respectively. }
$$

- We evaluate these indicators at

$$
\varepsilon_{k, \ell-1}^{\boldsymbol{\theta}}\left(S_{k, \ell}(\omega)\right) \text { and } \varepsilon_{k, \ell-1}^{\tilde{\theta}}\left(S_{k, \ell}(\omega)\right), \text { respectively. }
$$

Remarks on proof

- Only difficulty of the proof: To make the "roughly" precise.

Remarks on proof

- Only difficulty of the proof: To make the "roughly" precise.
- Anyhow, it can be entirely based on the following simple facts:

■ Fact 1: Let $I_{1} \subset J$ and $I_{2} \subset J$ with J finite, $I_{1} \neq J,\left|I_{1}\right|=\left|I_{2}\right|$ and $\exists i_{1} \in I_{1}$ such that $i_{1} \notin I_{2}$. Then $\exists i_{2} \in J$ such that $i_{2} \in I_{2}$, but $i_{2} \notin I_{1}$.

Remarks on proof

- Only difficulty of the proof: To make the "roughly" precise.
- Anyhow, it can be entirely based on the following simple facts:

■ Fact 1: Let $I_{1} \subset J$ and $I_{2} \subset J$ with J finite, $I_{1} \neq J,\left|I_{1}\right|=\left|I_{2}\right|$ and $\exists i_{1} \in I_{1}$ such that $i_{1} \notin I_{2}$. Then $\exists i_{2} \in J$ such that $i_{2} \in I_{2}$, but $i_{2} \notin I_{1}$.

■ Fact 2: Let $x_{i} \in \mathbb{R}_{+}, y_{i} \in \mathbb{R}_{+}, \tilde{x}_{i} \in \mathbb{R}_{+}, \tilde{y}_{i} \in \mathbb{R}_{+}, 1 \leq i \leq I$. Let $G, \tilde{G}:\{1, \ldots, I\} \rightarrow \mathbb{N}$ be defined by

$$
G(j):=\sum_{i=1}^{I} \mathbb{1}_{\left(x_{i}, \infty\right)}\left(y_{j}\right) \text { and } \tilde{G}(j):=\sum_{i=1}^{I} \mathbb{1}_{\left(\tilde{x}_{i}, \infty\right)}\left(\tilde{y}_{j}\right)
$$

Then
(i) If $\forall i \in\{1, \ldots, I\}: x_{i}<y_{j} \Rightarrow \tilde{x}_{i}<\tilde{y}_{j}$, then $G(j) \leq \tilde{G}(j)$.
(ii) If additionally $\exists \underline{i} \in\{1, \ldots, I\}$ such that $\tilde{x}_{\underline{i}}<\tilde{y}_{j}$ but $x_{\underline{i}} \geq y_{j}$ then $G(j)<\tilde{G}(j)$.

Consistency

■ Main result not immediately a tool to show inconsistency of profile likelihood method. Need some kind of uniformity.

Consistency

■ Main result not immediately a tool to show inconsistency of profile likelihood method. Need some kind of uniformity.

- Corollary: Denote by $B\left(\boldsymbol{\theta}_{0}, \epsilon\right)$ an ϵ-ball around $\boldsymbol{\theta}_{0}$ and assume that $\boldsymbol{\theta}$ is such that for some $m^{\prime} \in \mathbb{N}$ we have for all $m \geq m^{\prime}$ that $\left(\mathbb{P}^{\lambda_{0}, \boldsymbol{\theta}_{0}}\right)^{m}\left(B_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}\right) \geq c, c>0, \forall \tilde{\boldsymbol{\theta}} \in B\left(\boldsymbol{\theta}_{0}, \epsilon\right)$. Then

$$
\hat{\boldsymbol{\theta}}_{m} \stackrel{\mathbb{P}}{\rightarrow} \boldsymbol{\theta}_{0}, \text { as } m \rightarrow \infty
$$

Example ARA A_{1}

■ No guarantee that the main results can be applied to well-known effective age models.

Example ARA A_{1}

- No guarantee that the main results can be applied to well-known effective age models.
- For an ARA $_{1}$ condition (a) reads as

$$
\begin{aligned}
& S_{i, j-1}(\omega)-\theta S_{i, j-1}(\omega)<S_{k, \ell}(\omega)-\theta S_{k, \ell-1}(\omega) \\
\Rightarrow & S_{i, j-1}(\omega)-\tilde{\theta} S_{i, j-1}(\omega)<S_{k, \ell}(\omega)-\tilde{\theta} S_{k, \ell-1}(\omega) .
\end{aligned}
$$

Example ARA A_{1}

- No guarantee that the main results can be applied to well-known effective age models.
- For an ARA_{1} condition (a) reads as

$$
\begin{aligned}
& S_{i, j-1}(\omega)-\theta S_{i, j-1}(\omega)<S_{k, \ell}(\omega)-\theta S_{k, \ell-1}(\omega) \\
\Rightarrow & S_{i, j-1}(\omega)-\tilde{\theta} S_{i, j-1}(\omega)<S_{k, \ell}(\omega)-\tilde{\theta} S_{k, \ell-1}(\omega) .
\end{aligned}
$$

For $0 \leq \theta<\tilde{\theta} \leq 1, x \in \mathbb{R}_{+}, y \in \mathbb{R}_{+}$and $z \in \mathbb{R}_{+}$with $y<z$ we have by linearity

$$
x-\theta x<z-\theta y \Rightarrow x-\tilde{\theta} x<z-\tilde{\theta} y .
$$

Example ARA A_{1}

- No guarantee that the main results can be applied to well-known effective age models.
- For an ARA_{1} condition (a) reads as

$$
\begin{aligned}
& S_{i, j-1}(\omega)-\theta S_{i, j-1}(\omega)<S_{k, \ell}(\omega)-\theta S_{k, \ell-1}(\omega) \\
\Rightarrow & S_{i, j-1}(\omega)-\tilde{\theta} S_{i, j-1}(\omega)<S_{k, \ell}(\omega)-\tilde{\theta} S_{k, \ell-1}(\omega) .
\end{aligned}
$$

For $0 \leq \theta<\tilde{\theta} \leq 1, x \in \mathbb{R}_{+}, y \in \mathbb{R}_{+}$and $z \in \mathbb{R}_{+}$with $y<z$ we have by linearity

$$
x-\theta x<z-\theta y \Rightarrow x-\tilde{\theta} x<z-\tilde{\theta} y .
$$

- Hence, for $0 \leq \theta<\tilde{\theta} \leq 1$, any $m \in \mathbb{N}$ and any $\left(\lambda_{0}, \theta_{0}\right)$

$$
\left(\mathbb{P}^{\lambda_{0}, \theta_{0}}\right)^{m}\left(\ell_{P, m}\left(s^{*} \mid \theta, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s)\right) \geq \ell_{P, m}\left(s^{*} \mid \tilde{\theta}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s)\right)\right)=1
$$

Examples ARA A_{1} cont'd.

- Last result implies that $\ell_{m, P}$ is decreasing as function of θ. Could still be flat.

Examples ARA A_{1} cont'd.

- Last result implies that $\ell_{m, P}$ is decreasing as function of θ. Could still be flat.
- To check for strictly decreasing with positive probabilities we can use part (b).

Examples ARA A_{1} cont'd.

- Last result implies that $\ell_{m, P}$ is decreasing as function of θ. Could still be flat.
- To check for strictly decreasing with positive probabilities we can use part (b). For ARA $_{1}$ the condition reads as

$$
S_{i, j-1}-\tilde{\theta} S_{i, j-1}<S_{k, \ell}-\tilde{\theta} S_{k, \ell-1}, \text { but } S_{i, j-1}-\theta S_{i, j-1} \geq S_{k, \ell}-\theta S_{k, \ell-1}
$$

Examples ARA A_{1} cont'd.

- Last result implies that $\ell_{m, P}$ is decreasing as function of θ. Could still be flat.
- To check for strictly decreasing with positive probabilities we can use part (b). For ARA $_{1}$ the condition reads as

$$
S_{i, j-1}-\tilde{\theta} S_{i, j-1}<S_{k, \ell}-\tilde{\theta} S_{k, \ell-1}, \text { but } S_{i, j-1}-\theta S_{i, j-1} \geq S_{k, \ell}-\theta S_{k, \ell-1}
$$

■ With $i=1, j=1, k=2$ and $\ell=2$ the above event has probability

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} & {\left[F_{\lambda_{0}, \theta_{0}}^{S_{1,1}}\left(\frac{s_{2,2}-s_{2,1}}{1-\tilde{\theta}}+s_{2,1}\right)-F_{\lambda_{0}, \theta_{0}}^{S_{1,1}}\left(\frac{s_{2,2}-s_{2,1}}{1-\theta}+s_{2,1}\right)\right] } \\
& d F_{\lambda_{0}, \theta_{0}}^{S_{2,2}, S_{2,1}}\left(s_{2,2}, s_{2,1}\right) .
\end{aligned}
$$

■ Take $\left[\theta_{0}-\epsilon, \theta_{0}+\epsilon\right]$ and $\theta<\theta_{0}-\epsilon$. Then lower bound for $\left(\mathbb{P}^{\lambda_{0}, \theta_{0}}\right)^{m}\left(B_{m, \theta, \theta_{0}-\epsilon}\right)$ independent of m.

Example $^{\text {ARA }}{ }_{\infty}$

- For an ARA_{∞} condition (a) reads as

$$
\begin{aligned}
& s_{i-1}-\theta \sum_{\ell=1}^{i-1}(1-\theta)^{i-1-\ell} s_{\ell}<\bar{s}_{k}-\theta \sum_{\ell=1}^{k-1}(1-\theta)^{k-1-\ell} \bar{s}_{\ell} \\
\Rightarrow & s_{i-1}-\tilde{\theta} \sum_{\ell=1}^{i-1}(1-\tilde{\theta})^{i-1-\ell} s_{\ell}<\bar{s}_{k}-\tilde{\theta} \sum_{\ell=1}^{k-1}(1-\tilde{\theta})^{k-1-\ell} \bar{s}_{\ell} .
\end{aligned}
$$

Example $^{\text {ARA }}{ }_{\infty}$

- For an ARA_{∞} condition (a) reads as

$$
\begin{aligned}
& s_{i-1}-\theta \sum_{\ell=1}^{i-1}(1-\theta)^{i-1-\ell} s_{\ell}<\bar{s}_{k}-\theta \sum_{\ell=1}^{k-1}(1-\theta)^{k-1-\ell} \bar{s}_{\ell} \\
\Rightarrow & s_{i-1}-\tilde{\theta} \sum_{\ell=1}^{i-1}(1-\tilde{\theta})^{i-1-\ell} s_{\ell}<\bar{s}_{k}-\tilde{\theta} \sum_{\ell=1}^{k-1}(1-\tilde{\theta})^{k-1-\ell} \bar{s}_{\ell} .
\end{aligned}
$$

- May not hold for every pair $(\theta, \tilde{\theta})$ with $\theta<\tilde{\theta}$ regardless of $s_{1}<\ldots<s_{i-1}$ and $\bar{s}_{1}<\ldots<\bar{s}_{k}$.
- However, it holds for $0 \leq \theta<1$ and $\tilde{\theta}=1$ so that

$$
\left(\mathbb{P}^{\lambda_{0}, \theta_{0}}\right)^{m}\left(l_{P, m}\left(s^{*} \mid \theta\right) \geq l_{P, m}\left(s^{*} \mid 1\right)\right)=1, \quad 0 \leq \theta<1 .
$$

ARA $_{\infty}$ not monotone

ARA $_{1}$ Type 2

ARA $_{1}$ Type 1

ARA ${ }_{\infty}$ Type 2

ARA $_{1}$ Type 2 discrete

