Semi-parametric inference for effective age models

Eric Beutner, Maastricht University Joint work with Laurent Bordes and Laurent Doyen

Troyes, January 29

Overview

Introduction / Recap

Inference hazard and link function

Inference hazard and effective age function

Introduction / Recap

Recurrent events

- Some examples of recurrent events:
 - Re-occurrence of a tumour after surgical removal in cancer studies;
 - Migraines;
 - Outbreak of a disease;
 - Failure of a mechanical or electronic system;
 - Discovery of a bug in an operating system software or of an error in a scientific article.

Recurrent events

- Some examples of recurrent events:
 - Re-occurrence of a tumour after surgical removal in cancer studies;
 - Migraines;
 - Outbreak of a disease;
 - Failure of a mechanical or electronic system;
 - Discovery of a bug in an operating system software or of an error in a scientific article.
 - Monitoring an observational unit (e.g. patient, mechanical system) during the time interval $[0, \tau]$, the data consist of:
 - The times T_1, T_2, \ldots , between successive event occurrences;
 - The number of event occurrences $K := \max\{k \in \mathbb{N}_0 | S_k \le \tau\}$, where $S_k = \sum_{\ell=1}^k T_\ell$;
 - ♦ Additional covariates Z.

Counting process formulation

Alternatively, the information at time t can be represented by

 $\{\mathbf{Z}, \{N(s), 0 \le s \le t\}, \{Y(s), 0 \le s \le t\}\},\$

- $N(s) = \sum_{\ell=1}^{\infty} \mathbb{1}_{\{S_{\ell} \le s\}};$ $Y(s) = \mathbb{1}\{s \le \tau\};$
 - Z covariates as above.

Hollander & Peña (2004) introduced the following model:

Hollander & Peña (2004) introduced the following model:

• $N = \{N(s) | s \in [0, \tau]\}$ point process;

Hollander & Peña (2004) introduced the following model:

- $N = \{N(s) | s \in [0, \tau]\}$ point process;
- It is assumed that compensator A of N given the covariates \mathbf{Z} equals

$$A(t|\mathbf{Z}) = \int_0^t Y_i(s)\lambda_0\left(\varepsilon(s,\omega)\right)\psi(\boldsymbol{\beta}_0'\mathbf{Z})\,ds,$$

Hollander & Peña (2004) introduced the following model:

- $N = \{N(s) | s \in [0, \tau]\}$ point process;
- It is assumed that compensator A of N given the covariates \mathbf{Z} equals

$$A(t|\mathbf{Z}) = \int_0^t Y_i(s)\lambda_0\left(\varepsilon(s,\omega)\right)\psi(\boldsymbol{\beta}_0'\mathbf{Z})\,ds,$$

where

 ψ is a known link function;

Hollander & Peña (2004) introduced the following model:

- $N = \{N(s) | s \in [0, \tau]\}$ point process;
- It is assumed that compensator A of N given the covariates \mathbf{Z} equals

$$A(t|\mathbf{Z}) = \int_0^t Y_i(s)\lambda_0\left(\varepsilon(s,\omega)\right)\psi(\boldsymbol{\beta}_0'\mathbf{Z})\,ds,$$

- ψ is a known link function;
 - $\boldsymbol{\beta}_0$ is a (unknown) parameter vector;

Hollander & Peña (2004) introduced the following model:

- $N = \{N(s) | s \in [0, \tau]\}$ point process;
- It is assumed that compensator A of N given the covariates \mathbf{Z} equals

$$A(t|\mathbf{Z}) = \int_0^t Y_i(s)\lambda_0\left(\varepsilon(s,\omega)\right)\psi(\boldsymbol{\beta}_0'\mathbf{Z})\,ds,$$

- ψ is a known link function;
 - $\boldsymbol{\beta}_0$ is a (unknown) parameter vector;
- $\varepsilon(s, \omega)$ is a possibly random function that describes the effective age at time s;

Hollander & Peña (2004) introduced the following model:

- $N = \{N(s) | s \in [0, \tau]\}$ point process;
- It is assumed that compensator A of N given the covariates \mathbf{Z} equals

$$A(t|\mathbf{Z}) = \int_0^t Y_i(s)\lambda_0\left(\varepsilon(s,\omega)\right)\psi(\boldsymbol{\beta}_0'\mathbf{Z})\,ds,$$

- ψ is a known link function;
- β_0 is a (unknown) parameter vector;
- ε(s, ω) is a possibly random function that describes the effective age at time s;
 - λ_0 is an unknown hazard rate function.

Examples

Taking $\psi(u) = \exp(u)$ and $\varepsilon(s, \omega) = s$ leads to the Cox model.

Examples

- Taking $\psi(u) = \exp(u)$ and $\varepsilon(s, \omega) = s$ leads to the Cox model.
 - Taking $\psi(u) = 1$ and $\varepsilon(s, \omega) = s S_{N(s-,\omega)}$ leads i.i.d. inter-occurrence times, i.e., renewal process.

Examples

- Taking $\psi(u) = \exp(u)$ and $\varepsilon(s, \omega) = s$ leads to the Cox model.
 - Taking $\psi(u) = 1$ and $\varepsilon(s, \omega) = s S_{N(s-,\omega)}$ leads i.i.d. inter-occurrence times, i.e., renewal process.
 - Taking $\psi(u) = 1$ and $\varepsilon(s, \omega) = s \theta S_{k-1}(\omega)$ on $(S_{k-1}(\omega), S_k(\omega)]$ leads to an Arithmetic Reduction Age model of Type 1 (ARA₁).
 - For $\theta = 0$ we have $\varepsilon(s, \omega) = s \Rightarrow$ Poisson process for which effective age = calendar time;
 - For $\theta = 1$ we have $\varepsilon(s, \omega) = s S_{k-1}(\omega) \Rightarrow$ renewal process;
 - For $\theta \in (0, 1) \Rightarrow$ imperfect repair;
 - Gonzales et al. (2005) applied the model with $\theta \in \{0, 0.5, 1\}$ to the response of patients suffering from a non-curable cancer to a therapy.

Semi-parametric inference on hazard rate function and link function

Let (N_i, Y_i, Z_i) , $1 \le i \le m$, be *m* copies of (N, Y, Z).

9

- Let (N_i, Y_i, Z_i) , $1 \le i \le m$, be *m* copies of (N, Y, Z).
- For inference for the above model recall that an event at calendar time s is in general not "caused by" $\lambda(s) \Rightarrow$ Keep track of both time scales.

- Let (N_i, Y_i, Z_i) , $1 \le i \le m$, be *m* copies of (N, Y, Z).
- For inference for the above model recall that an event at calendar time s is in general not "caused by" λ(s) ⇒ Keep track of both time scales.
 To do so Peña et al. (2007) introduced double indexed stochastic processes:

$$N_{i}^{d}(s,t) = \int_{0}^{s} H_{i}(v,t) \, dN_{i}(v), \text{ and}$$
$$A_{i}^{d}(s,t) = \int_{0}^{s} H_{i}(v,t) \, dA_{i}(v),$$

where $H_i(s,t) = \mathbb{1}_{\{\epsilon_i(s) \le t\}}$.

- Let (N_i, Y_i, Z_i) , $1 \le i \le m$, be *m* copies of (N, Y, Z).
- For inference for the above model recall that an event at calendar time s is in general not "caused by" λ(s) ⇒ Keep track of both time scales.
 To do so Peña et al. (2007) introduced double indexed stochastic processes:

$$N_{i}^{d}(s,t) = \int_{0}^{s} H_{i}(v,t) \, dN_{i}(v), \text{ and}$$
$$A_{i}^{d}(s,t) = \int_{0}^{s} H_{i}(v,t) \, dA_{i}(v),$$

where $H_i(s,t) = \mathbb{1}_{\{\epsilon_i(s) \le t\}}$.

 $H_i(s, t)$ indicates whether at calendar time s the age is at most t.

- Let (N_i, Y_i, Z_i) , $1 \le i \le m$, be *m* copies of (N, Y, Z).
- For inference for the above model recall that an event at calendar time *s* is in general not "caused by" λ(s) ⇒ Keep track of both time scales.
 To do so Peña et al. (2007) introduced double indexed stochastic processes:

$$N_{i}^{d}(s,t) = \int_{0}^{s} H_{i}(v,t) \, dN_{i}(v), \text{ and}$$
$$A_{i}^{d}(s,t) = \int_{0}^{s} H_{i}(v,t) \, dA_{i}(v),$$

where $H_i(s,t) = \mathbb{1}_{\{\epsilon_i(s) \le t\}}$.

H_i(s,t) indicates whether at calendar time s the age is at most t.
 N^d_i(s,t) gives the number of events during 0 and s with effective age at most t.

Inference (cont'd)

The difference between N_i^d and A_i^d equals

$$M_i^d(s,t) = \int_0^s H_i(v,t) \, dM_i(v)$$
 with $M_i = N_i - A_i$.

Notice that M_i^d is not directly amenable to inference on λ_0 , as it involves the time-transformed λ_0 , i.e. $\lambda_0 \circ \epsilon$.

Inference (cont'd)

The difference between N_i^d and A_i^d equals

$$M_i^d(s,t) = \int_0^s H_i(v,t) \, dM_i(v) \text{ with } M_i = N_i - A_i.$$

Notice that M_i^d is not directly amenable to inference on λ_0 , as it involves the time-transformed λ_0 , i.e. $\lambda_0 \circ \epsilon$. Solution: De-couple λ_0 and ϵ .

Inference (cont'd)

The difference between N_i^d and A_i^d equals

$$M_i^d(s,t) = \int_0^s H_i(v,t) \, dM_i(v) \text{ with } M_i = N_i - A_i.$$

Notice that M_i^d is not directly amenable to inference on λ_0 , as it involves the time-transformed λ_0 , i.e. $\lambda_0 \circ \epsilon$.

Solution: De-couple λ_0 and ϵ .

Applying a change of variable leads to

$$M_i^*(s,t) = N_i^*(s,t) - \int_0^t Y_i^d(s,u,\boldsymbol{\beta}) \, d\Lambda(u),$$

where

 $Y_i^d(s, t, \beta) =$ size of risk set at calendar time s with age t

is a 'time-transformed' at risk process.

Inference (cont'd.)

For a given β the above representation suggests the following method of moment estimator for $\Lambda_0(t)$ at calendar time *s*:

$$\widehat{\Lambda}(t|s,\boldsymbol{\beta}) = \int_0^t \left(J(s,t) / \sum_{i=1}^m Y_i^d(s,u,\boldsymbol{\beta}) \right) \left[\sum_{i=1}^m N_i^d(s,du) \right],$$

where J(s,t) = 1 if $\sum_{i=1}^{m} Y_i^d(s, u, \beta) > 0$ and zero otherwise.

Inference (cont'd.)

For a given β the above representation suggests the following method of moment estimator for $\Lambda_0(t)$ at calendar time *s*:

$$\widehat{\Lambda}(t|s,\boldsymbol{\beta}) = \int_0^t \left(J(s,t) / \sum_{i=1}^m Y_i^d(s,u,\boldsymbol{\beta}) \right) \left[\sum_{i=1}^m N_i^d(s,du) \right],$$

where $J(\underline{s}, t) = 1$ if $\sum_{i=1}^{m} Y_i^d(\underline{s}, u, \boldsymbol{\beta}) > 0$ and zero otherwise.

Inserting $\widehat{\Lambda}(t|s, \beta)$ in the full likelihood Peña et al. (2007) obtain a profile likelihood function for estimating β .

Inference (cont'd.)

For a given β the above representation suggests the following method of moment estimator for $\Lambda_0(t)$ at calendar time *s*:

$$\widehat{\Lambda}(t|s,\boldsymbol{\beta}) = \int_0^t \left(J(s,t) / \sum_{i=1}^m Y_i^d(s,u,\boldsymbol{\beta}) \right) \left[\sum_{i=1}^m N_i^d(s,du) \right],$$

where J(s,t) = 1 if $\sum_{i=1}^{m} Y_i^d(s, u, \beta) > 0$ and zero otherwise.

- Inserting $\widehat{\Lambda}(t|s, \beta)$ in the full likelihood Peña et al. (2007) obtain a profile likelihood function for estimating β .
- Recall that, for instance, in the Cox model this leads to consistent and asymptotically normally distributed estimates.

Results

- Dorado et al. (1997) weak convergence results for $\Lambda_0 := \int \lambda_0(u) du$ for a model slightly more general than ARA₁.
- Gärtner (2003) also weak convergence results for the same model but different data collection process.
- Adekpedjou and Stocker (2015) weak convergence results for $\Lambda_0 := \int \lambda_0(u) \, du$ and β for an ARA₁-type model.
 - Very recently Peña (2014) obtained weak convergence results for $\Lambda_0 := \int \lambda_0(u) \, du$ and β without restricting the effective age function.

Results

- Dorado et al. (1997) weak convergence results for $\Lambda_0 := \int \lambda_0(u) du$ for a model slightly more general than ARA₁.
- Gärtner (2003) also weak convergence results for the same model but different data collection process.
- Adekpedjou and Stocker (2015) weak convergence results for $\Lambda_0 := \int \lambda_0(u) \, du$ and β for an ARA₁-type model.
- Very recently Peña (2014) obtained weak convergence results for Λ₀ := ∫ λ₀(u) du and β without restricting the effective age function.
 In these articles it is assumed that the effective age function is entirely known ⇒ the way the interventions influence the effective age must be known by the statistician.

Semi-parametric inference for hazard rate function and effective age function

Already seen: Models where the age function ϵ depends on a parameter ($\epsilon = s - \theta S_{k-1}$).

- Already seen: Models where the age function ϵ depends on a parameter ($\epsilon = s \theta S_{k-1}$).
- Assuming, for instance, θ to be unknown it is tempting to use the same inferential procedure.

- Already seen: Models where the age function ϵ depends on a parameter ($\epsilon = s \theta S_{k-1}$).
- Assuming, for instance, θ to be unknown it is tempting to use the same inferential procedure.
- However, notice this model does not fit directly into the above inferential procedure, because unknown are (θ_0, λ_0) where θ_0 unknown parameter of age function ϵ in contrast to β which is an unknown parameter of link function ψ .

- Already seen: Models where the age function ϵ depends on a parameter ($\epsilon = s \theta S_{k-1}$).
- Assuming, for instance, θ to be unknown it is tempting to use the same inferential procedure.
- However, notice this model does not fit directly into the above inferential procedure, because unknown are (θ_0, λ_0) where θ_0 unknown parameter of age function ϵ in contrast to β which is an unknown parameter of link function ψ .

Model

Let N = {N(s)|s ∈ [0, τ]} be a counting process.
It is assumed that the compensator A of N is given by

$$A(t) = \int_0^t Y(s)\lambda(\varepsilon^{\theta}(s)) \, ds.$$
Model

Let N = {N(s)|s ∈ [0, τ]} be a counting process.
It is assumed that the compensator A of N is given by

$$A(t) = \int_0^t Y(s)\lambda(\varepsilon^{\theta}(s)) \, ds.$$

Moreover, for every $\theta \in \Theta$, $\Theta \subset \mathbb{R}^d$, we have that the process $\varepsilon^{\theta} = \{\epsilon^{\theta}(s), 0 \le s \le \tau\}$ fulfils

- $\varepsilon^{\theta}(0,\omega) = c_0$ a.s. for some $c_0 \in \mathbb{R}_+$;
- $s \to \varepsilon^{\theta}(s, \omega)$ is a.s. non-negative;
- $s \to \varepsilon^{\theta}(s, \omega)$ is a.s. continuous and increasing on $(S_{k-1}, S_k]$, $k \in \mathbb{N}$.

Model

Let N = {N(s)|s ∈ [0, τ]} be a counting process.
It is assumed that the compensator A of N is given by

$$A(t) = \int_0^t Y(s)\lambda(\varepsilon^{\theta}(s)) \, ds.$$

Moreover, for every $\theta \in \Theta$, $\Theta \subset \mathbb{R}^d$, we have that the process $\varepsilon^{\theta} = \{\epsilon^{\theta}(s), 0 \le s \le \tau\}$ fulfils

- $\varepsilon^{\boldsymbol{\theta}}(0,\omega) = c_0 \text{ a.s. for some } c_0 \in \mathbb{R}_+;$
- $s \to \varepsilon^{\theta}(s, \omega)$ is a.s. non-negative;
- $s \to \varepsilon^{\theta}(s, \omega)$ is a.s. continuous and increasing on $(S_{k-1}, S_k]$, $k \in \mathbb{N}$.

Example ARA₁: Then $\Theta = [0, 1]$ and $\varepsilon^{\theta}(s, \omega) = s - \theta S_{k-1}(\omega)$ on $(S_{k-1}(\omega), S_k(\omega)].$

Profile likelihood

Let N_1, \ldots, N_m be *m* independent copies of *N*. Then full likelihood equals $L_{m,F}(s|\lambda, \varepsilon^{\theta}, \mathbf{D}_m(s))$

$$\prod_{i=1}^{m} \prod_{u=0}^{s} \left[Y_{i}(u)\lambda(\varepsilon_{i}^{\theta}(u)) \right]^{N_{i}(\Delta u)} \exp\left[-\sum_{i=1}^{m} \int_{0}^{s} Y_{i}(u)\lambda(\varepsilon_{i}^{\theta}(u)) du \right]$$
$$= \prod_{i=1}^{m} \prod_{u=0}^{s} \left[Y_{i}(u)\lambda(\varepsilon_{i}^{\theta}(u)) \right]^{N_{i}(\Delta u)} \exp\left[-\int_{0}^{\infty} S_{m}^{\theta}(s,u) d\Lambda(u) \right],$$

where $\mathbf{D}_m(s)$ denotes the data at time s and

$$\mathcal{S}_{m}^{\theta}(s,t) := \sum_{i=1}^{m} \sum_{j=1}^{N_{i}(s-)} \gamma_{i,j-1}^{\theta}(t) \cdot \mathbb{1}_{(\varepsilon_{i,j-1}^{\theta}(S_{i,j-1}+),\varepsilon_{i,j-1}^{\theta}(S_{i,j})]}(t) \\ + \sum_{i=1}^{m} \gamma_{i,N_{i}(s-)}^{\theta}(t) \cdot \mathbb{1}_{(\varepsilon_{i,N_{i}(s-)}^{\theta}(S_{i,N_{i}(s-)}+),\varepsilon_{i,N_{i}(s-)}^{\theta}(s\wedge\tau_{i})]}(t).$$

Profile likelihood (cont'd.)

To profile out the infinite-dimensional parameter we use the method-of-moment estimator proposed by Peña et al. that equals here for fixed θ

$$\widehat{\Lambda}_m(s,t|\boldsymbol{\theta}) := \int_0^t \frac{J_m^{\boldsymbol{\theta}}(s,u)}{S_m^{\boldsymbol{\theta}}(s,u)} \left[\sum_{i=1}^m N_i^{d,\boldsymbol{\theta}}(s,du) \right].$$

Profile likelihood (cont'd.)

To profile out the infinite-dimensional parameter we use the method-of-moment estimator proposed by Peña et al. that equals here for fixed θ

$$\widehat{\Lambda}_m(s,t|\boldsymbol{\theta}) := \int_0^t \frac{J_m^{\boldsymbol{\theta}}(s,u)}{S_m^{\boldsymbol{\theta}}(s,u)} \left[\sum_{i=1}^m N_i^{d,\boldsymbol{\theta}}(s,du) \right].$$

Worth mentioning that Â_m can be justified as NPMLE.
 Hence full likelihood after plugging in Â_m can be considered profile likelihood function

$$\ell_{m,P}(s|\boldsymbol{\theta},\widehat{\Lambda}_m,\mathbf{D}_m(s)) = -\int_0^s \sum_{i=1}^m \log\left(\mathcal{S}_m(s,\varepsilon_i^{\boldsymbol{\theta}}(w))\right) \, dN_i(w),$$

To motivate the main result consider log profile likelihood

$$-\int_0^s \sum_{i=1}^m \log\left(\mathcal{S}_m^{\boldsymbol{\theta}}(s,\varepsilon_i^{\boldsymbol{\theta}}(w))\right) \, dN_i(w),$$

for an ARA₁ model and $\theta = 0$ and $\theta = 1$, respectively.

To motivate the main result consider log profile likelihood

$$-\int_0^s \sum_{i=1}^m \log \left(\mathcal{S}_m^{\boldsymbol{\theta}}(s, \varepsilon_i^{\boldsymbol{\theta}}(w)) \right) \, dN_i(w),$$

for an ARA₁ model and $\theta = 0$ and $\theta = 1$, respectively. Take m = 2, let both samples be Type-II censored and consider arbitrary event times $s_{1,1}, \ldots, s_{1,n_1}$ and $s_{2,1}, \ldots, s_{2,n_2}$.

To motivate the main result consider log profile likelihood

$$-\int_0^s \sum_{i=1}^m \log \left(\mathcal{S}_m^{\boldsymbol{\theta}}(s, \varepsilon_i^{\boldsymbol{\theta}}(w)) \right) \, dN_i(w),$$

for an ARA₁ model and $\theta = 0$ and $\theta = 1$, respectively. Take m = 2, let both samples be Type-II censored and consider arbitrary event times $s_{1,1}, \ldots, s_{1,n_1}$ and $s_{2,1}, \ldots, s_{2,n_2}$. Then with $s = \max\{s_{1,n_1}, s_{2,n_2}\}$ the function $\sum_{i=1}^2 S_2^0(s, \cdot)$ equals:

$$\mathbb{1}_{(0,s_{1,1}]}(\cdot) + \mathbb{1}_{(s_{1,1},s_{1,2}]}(\cdot) + \ldots + \mathbb{1}_{(s_{1,n_1-1},s_{1,n_1}]}(\cdot) + \ldots + \mathbb{1}_{(s_{2,n_2-1},s_{2,n_2}]}(\cdot)$$

To motivate the main result consider log profile likelihood

$$-\int_0^s \sum_{i=1}^m \log \left(\mathcal{S}_m^{\boldsymbol{\theta}}(s, \varepsilon_i^{\boldsymbol{\theta}}(w)) \right) \, dN_i(w),$$

for an ARA₁ model and $\theta = 0$ and $\theta = 1$, respectively. Take m = 2, let both samples be Type-II censored and consider arbitrary event times $s_{1,1}, \ldots, s_{1,n_1}$ and $s_{2,1}, \ldots, s_{2,n_2}$. Then with $s = \max\{s_{1,n_1}, s_{2,n_2}\}$ the function $\sum_{i=1}^2 S_2^0(s, \cdot)$ equals:

$$\mathbb{1}_{(0,s_{1,1}]}(\cdot) + \mathbb{1}_{(s_{1,1},s_{1,2}]}(\cdot) + \ldots + \mathbb{1}_{(s_{1,n_1-1},s_{1,n_1}]}(\cdot) + \ldots + \mathbb{1}_{(s_{2,n_2-1},s_{2,n_2}]}(\cdot)$$

whereas the function $\sum_{i=1}^{2} S_{2}^{1}(s, \cdot)$ equals

 $\mathbb{1}_{(0,s_{1,1}]}(\cdot) + \mathbb{1}_{(0,s_{1,2}]}(\cdot) + \ldots + \mathbb{1}_{(0,s_{1,n_1}]}(\cdot) + \ldots + \mathbb{1}_{(0,s_{2,n_2}]}(\cdot).$

Main result part (a)

Theorem: Let $(\mathbb{P}^{\lambda_0, \theta_0})^m$ the *m*-fold product measure of $\mathbb{P}^{\lambda_0, \theta_0}$ and the samples Type-II censored.

(a) Denote by $A_{m,\theta,\tilde{\theta}}$ the set of all ω 's such that for all pairs (i, j), $1 \leq i \leq m, 1 \leq j \leq J_i(s^*)$, and all pairs $(k, \ell) \ 1 \leq k \leq m$, $1 \leq \ell \leq J_k(s^*)$, we have that

$$\varepsilon_{i,j-1}^{\boldsymbol{\theta}}(S_{i,j-1}(\omega)) < \varepsilon_{k,\ell-1}^{\boldsymbol{\theta}}(S_{k,\ell}(\omega))$$

implies that

$$\varepsilon_{i,j-1}^{\tilde{\boldsymbol{\theta}}}(S_{i,j-1}(\omega)) < \varepsilon_{k,\ell-1}^{\tilde{\boldsymbol{\theta}}}(S_{k,\ell}(\omega)).$$

Then we have

$$(\mathbb{P}^{\lambda_{0},\boldsymbol{\theta}_{0}})^{m} \left(\ell_{P,m} \left(s^{*} | \boldsymbol{\theta}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s) \right) \geq \ell_{P,m} \left(s^{*} | \widetilde{\boldsymbol{\theta}}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s) \right) \right)$$

$$\geq (\mathbb{P}^{\lambda_{0},\boldsymbol{\theta}_{0}})^{m} \left(A_{m,\boldsymbol{\theta},\widetilde{\boldsymbol{\theta}}} \right).$$

The theorem provides a tool for pairwise comparison of the profile likelihood function.

- The theorem provides a tool for pairwise comparison of the profile likelihood function.
 - I Intuitively, the condition leads to the result, because
 - S_m^{θ} consists (roughly) of indicator functions of the form

$$\mathbb{1}_{\left(\varepsilon_{i,j-1}^{\boldsymbol{\theta}}(S_{i,j-1}+),\infty\right)}(\cdot)$$

and $\mathcal{S}_m^{\tilde{\boldsymbol{ heta}}}$ is of the form

$$\mathbb{1}_{(\varepsilon_{i,j-1}^{\tilde{\theta}}(S_{i,j-1}+),\infty)}(\cdot).$$

- The theorem provides a tool for pairwise comparison of the profile likelihood function.
 - I Intuitively, the condition leads to the result, because
 - S_m^{θ} consists (roughly) of indicator functions of the form

$$\mathbb{1}_{\left(\varepsilon_{i,j-1}^{\boldsymbol{\theta}}(S_{i,j-1}+),\infty\right)}(\cdot)$$

and $\mathcal{S}_m^{\tilde{\boldsymbol{ heta}}}$ is of the form

$$\mathbb{1}_{(\varepsilon_{i,j-1}^{\tilde{\boldsymbol{\theta}}}(S_{i,j-1}+),\infty)}(\cdot).$$

• We evaluate these indicators at

$$\varepsilon_{k,\ell-1}^{\boldsymbol{\theta}}(S_{k,\ell}(\omega))$$
 and $\varepsilon_{k,\ell-1}^{\tilde{\boldsymbol{\theta}}}(S_{k,\ell}(\omega))$, respectively.

Main result part (b)

Theorem (cont'd) (b) Denote by $B_{m,\theta,\tilde{\theta}}$ the set of all $\omega \in A_{m,\theta,\tilde{\theta}}$ for which we additionally have that there are at least two pairs $(\underline{i}, \underline{j})$, $1 \leq \underline{i} \leq m, 1 \leq \underline{j} \leq J_{\underline{i}}(s^*)$, and $(\underline{k}, \underline{\ell}), 1 \leq \underline{k} \leq m, 1 \leq \underline{\ell} \leq J_{\underline{k}}(s^*)$, such that

$$\varepsilon_{\underline{i},\underline{j}-1}^{\tilde{\boldsymbol{\theta}}}(S_{\underline{i},\underline{j}-1}(\omega)) < \varepsilon_{\underline{k},\underline{\ell}-1}^{\tilde{\boldsymbol{\theta}}}(S_{\underline{k},\underline{\ell}}(\omega))$$

but

$$\varepsilon_{\underline{i},\underline{j}-1}^{\boldsymbol{\theta}}(S_{\underline{i},\underline{j}-1}(\omega)) \ge \varepsilon_{\underline{k},\underline{\ell}-1}^{\boldsymbol{\theta}}(S_{\underline{k},\underline{\ell}}(\omega)).$$

Then we have

$$(\mathbb{P}^{\lambda_{0},\boldsymbol{\theta}_{0}})^{m} \left(\ell_{P,m} \left(s^{*} | \boldsymbol{\theta}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s) \right) > \ell_{P,m} \left(s^{*} | \widetilde{\boldsymbol{\theta}}, \widehat{\Lambda}_{m}, \mathbf{D}_{m}(s) \right) \right) \\ \geq (\mathbb{P}^{\lambda_{0},\boldsymbol{\theta}_{0}})^{m} \left(B_{m,\boldsymbol{\theta},\widetilde{\boldsymbol{\theta}}} \right).$$

As in part (a) we get a tool for pairwise comparison of the profile likelihood function.

- As in part (a) we get a tool for pairwise comparison of the profile likelihood function.
- We only consider $\omega \in A_{m,\theta,\tilde{\theta}}$. For those ω we already know that $\ell_{P,m}$ at θ is at least as large as at $\tilde{\theta}$

- As in part (a) we get a tool for pairwise comparison of the profile likelihood function.
- We only consider $\omega \in A_{m,\theta,\tilde{\theta}}$. For those ω we already know that $\ell_{P,m}$ at θ is at least as large as at $\tilde{\theta}$
 - Intuitively, the condition leads to the result, because
 - \mathcal{S}_m^{θ} and $\mathcal{S}_m^{\tilde{\theta}}$ consists (roughly) of indicator functions of the form

 $\mathbb{1}_{(\varepsilon_{i,j-1}^{\theta}(S_{i,j-1}+),\infty)}(\cdot) \text{ and } \mathbb{1}_{(\varepsilon_{i,j-1}^{\tilde{\theta}}(S_{i,j-1}+),\infty)}(\cdot), \text{ respectively.}$

- As in part (a) we get a tool for pairwise comparison of the profile likelihood function.
- We only consider $\omega \in A_{m,\theta,\tilde{\theta}}$. For those ω we already know that $\ell_{P,m}$ at θ is at least as large as at $\tilde{\theta}$
 - Intuitively, the condition leads to the result, because
 - \mathcal{S}_m^{θ} and $\mathcal{S}_m^{\tilde{\theta}}$ consists (roughly) of indicator functions of the form

$$\mathbb{1}_{(\varepsilon_{i,j-1}^{\theta}(S_{i,j-1}+),\infty)}(\cdot) \text{ and } \mathbb{1}_{(\varepsilon_{i,j-1}^{\tilde{\theta}}(S_{i,j-1}+),\infty)}(\cdot), \text{ respectively.}$$

• We evaluate these indicators at

$$\varepsilon_{k,\ell-1}^{\boldsymbol{\theta}}(S_{k,\ell}(\omega)) \text{ and } \varepsilon_{k,\ell-1}^{\tilde{\boldsymbol{\theta}}}(S_{k,\ell}(\omega)), \text{ respectively.}$$

Remarks on proof

Only difficulty of the proof: To make the "roughly" precise.

Remarks on proof

- Only difficulty of the proof: To make the "roughly" precise.
- Anyhow, it can be entirely based on the following simple facts:
- Fact 1: Let $I_1 \subset J$ and $I_2 \subset J$ with J finite, $I_1 \neq J$, $|I_1| = |I_2|$ and $\exists i_1 \in I_1$ such that $i_1 \notin I_2$. Then $\exists i_2 \in J$ such that $i_2 \in I_2$, but $i_2 \notin I_1$.

Remarks on proof

- Only difficulty of the proof: To make the "roughly" precise.
 Anyhow, it can be entirely based on the following simple facts:
 Fact 1: Let I₁ ⊂ J and I₂ ⊂ J with J finite, I₁ ≠ J, |I₁| = |I₂| and ∃i₁ ∈ I₁ such that i₁ ∉ I₂. Then ∃i₂ ∈ J such that i₂ ∈ I₂, but i₂ ∉ I₁.
 - Fact 2: Let $x_i \in \mathbb{R}_+, y_i \in \mathbb{R}_+, \tilde{x}_i \in \mathbb{R}_+, \tilde{y}_i \in \mathbb{R}_+, 1 \le i \le I$. Let $G, \tilde{G} : \{1, \dots, I\} \to \mathbb{N}$ be defined by

$$G(j) := \sum_{i=1}^{I} \mathbb{1}_{(x_i,\infty)}(y_j) \text{ and } \tilde{G}(j) := \sum_{i=1}^{I} \mathbb{1}_{(\tilde{x}_i,\infty)}(\tilde{y}_j).$$

Then

- (i) If $\forall i \in \{1, \dots, I\}$: $x_i < y_j \Rightarrow \tilde{x}_i < \tilde{y}_j$, then $G(j) \le \tilde{G}(j)$. (ii) If additionally $\exists i \in \{1, \dots, I\}$ such that $\tilde{x}_i < \tilde{y}_i$ but $x_i > y_i$ th
- (ii) If additionally $\exists \underline{i} \in \{1, \dots, I\}$ such that $\tilde{x}_{\underline{i}} < \tilde{y}_j$ but $x_{\underline{i}} \ge y_j$ then $G(j) < \tilde{G}(j)$.

Consistency

Main result not immediately a tool to show inconsistency of profile likelihood method. Need some kind of uniformity.

Consistency

- Main result not immediately a tool to show inconsistency of profile likelihood method. Need some kind of uniformity.
- **Corollary:** Denote by $B(\boldsymbol{\theta}_0, \epsilon)$ an ϵ -ball around $\boldsymbol{\theta}_0$ and assume that $\boldsymbol{\theta}$ is such that for some $m' \in \mathbb{N}$ we have for all $m \ge m'$ that $(\mathbb{P}^{\lambda_0, \boldsymbol{\theta}_0})^m (B_{m, \boldsymbol{\theta}, \tilde{\boldsymbol{\theta}}}) \ge c, c > 0, \forall \tilde{\boldsymbol{\theta}} \in B(\boldsymbol{\theta}_0, \epsilon)$. Then

$$\hat{\boldsymbol{\theta}}_m \stackrel{\mathbb{P}}{\nrightarrow} \boldsymbol{\theta}_0, \text{ as } m \to \infty.$$

Example ARA $_1$

No guarantee that the main results can be applied to well-known effective age models.

Example ARA $_1$

- No guarantee that the main results can be applied to well-known effective age models.
- For an ARA $_1$ condition (a) reads as

$$S_{i,j-1}(\omega) - \theta S_{i,j-1}(\omega) < S_{k,\ell}(\omega) - \theta S_{k,\ell-1}(\omega)$$

$$\Rightarrow S_{i,j-1}(\omega) - \tilde{\theta} S_{i,j-1}(\omega) < S_{k,\ell}(\omega) - \tilde{\theta} S_{k,\ell-1}(\omega).$$

Example ARA $_1$

- No guarantee that the main results can be applied to well-known effective age models.
- For an ARA₁ condition (a) reads as

$$S_{i,j-1}(\omega) - \theta S_{i,j-1}(\omega) < S_{k,\ell}(\omega) - \theta S_{k,\ell-1}(\omega)$$

$$\Rightarrow S_{i,j-1}(\omega) - \tilde{\theta} S_{i,j-1}(\omega) < S_{k,\ell}(\omega) - \tilde{\theta} S_{k,\ell-1}(\omega).$$

For $0 \le \theta < \tilde{\theta} \le 1$, $x \in \mathbb{R}_+$, $y \in \mathbb{R}_+$ and $z \in \mathbb{R}_+$ with y < z we have by linearity

$$x - \theta x < z - \theta y \Rightarrow x - \tilde{\theta} x < z - \tilde{\theta} y.$$

Example ARA₁

- No guarantee that the main results can be applied to well-known effective age models.
- For an ARA₁ condition (a) reads as

$$S_{i,j-1}(\omega) - \theta S_{i,j-1}(\omega) < S_{k,\ell}(\omega) - \theta S_{k,\ell-1}(\omega)$$

$$\Rightarrow S_{i,j-1}(\omega) - \tilde{\theta} S_{i,j-1}(\omega) < S_{k,\ell}(\omega) - \tilde{\theta} S_{k,\ell-1}(\omega).$$

For $0 \le \theta < \tilde{\theta} \le 1$, $x \in \mathbb{R}_+$, $y \in \mathbb{R}_+$ and $z \in \mathbb{R}_+$ with y < z we have by linearity

$$x - \theta x < z - \theta y \Rightarrow x - \tilde{\theta} x < z - \tilde{\theta} y.$$

Hence, for $0 \le \theta < \tilde{\theta} \le 1$, any $m \in \mathbb{N}$ and any (λ_0, θ_0)

$$\left(\mathbb{P}^{\lambda_0,\theta_0}\right)^m \left(\ell_{P,m}\left(s^*|\theta,\widehat{\Lambda}_m,\mathbf{D}_m(s)\right) \ge \ell_{P,m}\left(s^*|\widetilde{\theta},\widehat{\Lambda}_m,\mathbf{D}_m(s)\right)\right) = 1.$$

Last result implies that $\ell_{m,P}$ is decreasing as function of θ . Could still be flat.

- Last result implies that $\ell_{m,P}$ is decreasing as function of θ . Could still be flat.
- To check for strictly decreasing with positive probabilities we can use part (b).

- Last result implies that $\ell_{m,P}$ is decreasing as function of θ . Could still be flat.
 - To check for strictly decreasing with positive probabilities we can use part (b). For ARA₁ the condition reads as

 $S_{i,j-1} - \tilde{\theta}S_{i,j-1} < S_{k,\ell} - \tilde{\theta}S_{k,\ell-1}, \text{ but } S_{i,j-1} - \theta S_{i,j-1} \ge S_{k,\ell} - \theta S_{k,\ell-1}.$

- Last result implies that $\ell_{m,P}$ is decreasing as function of θ . Could still be flat.
 - To check for strictly decreasing with positive probabilities we can use part (b). For ARA₁ the condition reads as

$$S_{i,j-1} - \tilde{\theta}S_{i,j-1} < S_{k,\ell} - \tilde{\theta}S_{k,\ell-1}, \text{ but } S_{i,j-1} - \theta S_{i,j-1} \ge S_{k,\ell} - \theta S_{k,\ell-1}.$$

With i = 1, j = 1, k = 2 and $\ell = 2$ the above event has probability

$$\int_{\mathbb{R}^2} \left[F_{\lambda_0,\theta_0}^{S_{1,1}} \left(\frac{s_{2,2} - s_{2,1}}{1 - \tilde{\theta}} + s_{2,1} \right) - F_{\lambda_0,\theta_0}^{S_{1,1}} \left(\frac{s_{2,2} - s_{2,1}}{1 - \theta} + s_{2,1} \right) \right] \\ dF_{\lambda_0,\theta_0}^{S_{2,2},S_{2,1}}(s_{2,2},s_{2,1}).$$

Take $[\theta_0 - \epsilon, \theta_0 + \epsilon]$ and $\theta < \theta_0 - \epsilon$. Then lower bound for $(\mathbb{P}^{\lambda_0, \theta_0})^m (B_{m, \theta, \theta_0 - \epsilon})$ independent of m.

Example ARA $_{\infty}$

For an ARA_{∞} condition (a) reads as

Example ARA $_{\infty}$

For an ARA_{∞} condition (a) reads as

$$s_{i-1} - \theta \sum_{\ell=1}^{i-1} (1-\theta)^{i-1-\ell} s_{\ell} < \bar{s}_k - \theta \sum_{\ell=1}^{k-1} (1-\theta)^{k-1-\ell} \bar{s}_{\ell}$$
$$\Rightarrow s_{i-1} - \tilde{\theta} \sum_{\ell=1}^{i-1} (1-\tilde{\theta})^{i-1-\ell} s_{\ell} < \bar{s}_k - \tilde{\theta} \sum_{\ell=1}^{k-1} (1-\tilde{\theta})^{k-1-\ell} \bar{s}_{\ell}.$$

May not hold for every pair (θ, θ̃) with θ < θ̃ regardless of s₁ < ... < s_{i-1} and s̄₁ < ... < s̄_k.
However, it holds for 0 ≤ θ < 1 and θ̃ = 1 so that

$$(\mathbb{P}^{\lambda_0,\theta_0})^m (l_{P,m}(s^*|\theta) \ge l_{P,m}(s^*|1)) = 1, \quad 0 \le \theta < 1.$$

ARA_{∞} not monotone

$\textbf{ARA}_1 \textbf{ Type 2}$

$\boldsymbol{ARA}_1 \; \boldsymbol{Type 1}$

ARA_{∞} Type 2

$\textbf{ARA}_1 \textbf{ Type 2 discrete}$

